
Fancy Math
for a

Stupid Chat

By Milkey Mouse

I just feel like somebody’s watching me

• School tracks all Wi-Fi, Bluetooth, and radio
communications from any school computer

• DyKnow makes the situation even worse if you’re not in
Safe Mode

• If you’re on your own device and connected to LWSD-
GUEST they also track you

• They scramble signals from cell towers so nobody uses
their data plan

• Their Microsoft Exchange server is set to keep all emails
and conversations for 100 days after deletion, even if
perma-deleted by the user

• But the one thing they DON’T track…

AUDIO!

Audio as a Transport

• It’s just too weird for them to think of

• Why would DyKnow need audio mirroring?

• Worst case scenario some kid is listening to Justin
Bieber, right?

• WRONG!

• By using sound you can transfer quite a bit of data
(I’ll get back to this in a second)

But wait, there’s more

• The Mosquito Tone
• Invented by a shopkeeper and an age-discriminatory

sonic weapon

• It would make an interesting argumentative essay

• Very high-pitched

• Can only be heard by people under 25 (so no teacher
snooping!)

• The cutoff age can change by changing the frequency minute
amounts

• No known side effects

Transmission Formats (or encodings, as they’re
known in the 1337 h4x0r biz)

• Using different frequencies (and rounding to the nearest bin in case of error) for multiple
characters

• Morse code (…---…)
• Pretty much the original, used as early as 1844
• Very good margins for error with only 2 possibilities
• But slooow

• If each dot took 0.2 seconds and each dash took 0.5, this would take 1.8 seconds to transmit the word “sos”

• ASCII
• 128 characters of stuff
• What early computers/computer enthusiasts used
• Only Latin characters, numbers, and some punctuation
• Needless to say, that’s not what they use today
• Margin for error would be too small with 128 discrete frequencies/”bins”

• Base64
• Uses only 64 characters to represent any other character, it just takes more of them
• Doubles the size of each bin for the frequencies

• Base32
• Like Base64, but uses 32 characters instead of 64 and the resulting messages are even longer
• Doubles the margins again from Base64

So I chose Base32, because after testing even Base64 didn’t have small enough bins.

On the bright side, the bins of each frequency are so large that each character can be

transmitted in under 0.1 seconds.

Now how to generate the sound?

• If using Base32/Base64, encode the message now

• Get a numerical index for each character

• For each resulting number, multiply by 100 and add
17000 Hz (just a little bit below the Mosquito
Tone). Save this to an audio file in memory, so it
never gets stored on the hard drive and becomes
trackable.

• Play the audio file at full volume. (Since the sounds
are so high-pitched, it doesn’t matter how loud it is.

“Hello World”

“JJBSWY3DPEBLW64TM MQ= = = = = =”

[9, 9, 1, 18, 22, 24, 27, 3, 15, 4, 1, 11, 22, 30, 28, 19,
12, 33, 12, 16, 32, 33, 32, 33, 32, 33, 32, 33, 32, 33, 32]

But there’s another problem…

WARNING:
MATH INCOMING

The Zero-Crossing Algorithm

3 ÷ 2 = 1.5

1 2 3

Just count the times the

wave crosses zero!

I saw a sine
And it was made of points and lines

Problems with the Zero-Crossing Algorithm

+

Ultrasonic frequency Audible frequency (e.g. talking)

=

A weird thing

All fine and dandy when the ultrasound is louder than
the speech…

closer to this one

Result is the

same as that of

the ultrasonic

transmission

Problems with the Zero-Crossing Algorithm

+

Ultrasonic frequency Audible frequency (e.g. talking)

=

An even weirder thing

…but when talking is louder than the transmission it
wonks out (the technical term)

closer to this one

Result is the

same as the

talking!



So with any noise in the
background the Zero Crossing

Algorithm won’t work.

Enter Fast Fourier Transform (FFT)

Wonky wave

(pronounced four-ee-yay)

FFT!

An FFT outputs a nice pretty
histogram of possible frequencies.

How does it do this?

Math too complicated to
go into here.

Enter Fast Fourier Transform (FFT)
(pronounced four-ee-yay)

Now let’s take a look at that
histogram, shall we?

Frequency

A
m

p
lit

u
d

e

Possible Frequencies in Captured Sound

Enter Fast Fourier Transform (FFT)
(pronounced four-ee-yay)

First order of business: cut off the
audible range

Frequency

A
m

p
lit

u
d

e

Possible Frequencies in Captured Sound

All of these are probably talking,

as they’re in the audible range…

Enter Fast Fourier Transform (FFT)
(pronounced four-ee-yay)

Then we get the frequency over the threshold

Frequency

A
m

p
lit

u
d

e

Possible Frequencies in Captured Sound

…so we chop them all off!

Next we find the highest

one above our threshold…

And voila! Here’s the

frequency we were

looking for.

As evidenced by the heights of the original audible

peaks, the FFT algorithm filters noise very well and

can be used to pick up transmissions even from
across the room!

Frequency

A
m

p
lit

u
d

e

Possible Frequencies in Captured Sound

All of these are probably talking,

as they’re in the audible range…

Conversion back to text is pretty much the
same but backwards

• Stream audio from the mic and run FFTs until you
get outlier frequencies (the FFT conveniently has
bin sizes of 100 by default)

• With the same conversion table as last time, turn
the numbers back into letters and process the data.

• Use Base64/Base32 if needed to decode the
message into a string again.

“Hello World”

“JBSWY3DPEBLW64TMMQ======”

[9, 9, 1, 18, 22, 24, 27, 3, 15, 4, 1, 11, 22, 30, 28, 19,
12, 33, 12, 16, 32, 33, 32, 33, 32, 33, 32, 33, 32, 33, 32]

But what if you’re really far
away?

Take clues from torrents and make it P2P

Take clues from torrents and make it P2P

Take clues from torrents and make it P2P

Take clues from torrents and make it P2P

Take clues from torrents and make it P2P

And have error correction

And have error correction

Sos

And have error correction

OK

Sos
OK

And have error correction

OK

lolwut

Sos
OK

And have error correction

And have error correction

He said, “Sos”

And have error correction

Oh OK

He said, “Sos”

Or even pipe internet

Get me
“blocked.com” Crappy School Internet

Legit Internet

Or even pipe internet

Get me
“blocked.com” Crappy School Internet

You can’t have
“blocked.com”

Legit Internet

Or even pipe internet

Get me
“blocked.com” Crappy School Internet

You can’t have
“blocked.com”

Legit Internet

Fine then.
Ultrasound

Node, get me
“blocked.com”

Or even pipe internet

Get me
“blocked.com”

Here is blocked.com

Crappy School Internet

You can’t have
“blocked.com”

Legit Internet

Fine then.
Ultrasound

Node, get me
“blocked.com”

Messages are untraceable (except by literally
following the sound, which is hard) and above
the hearing ranges of most people above 25

And who knows, maybe we won’t get caught
this time.

(LOL JK)

Time for a demo!

	Slide 1: Fancy Math for a Stupid Chat
	Slide 2: I just feel like somebody’s watching me
	Slide 3: AUDIO!
	Slide 4: Audio as a Transport
	Slide 5: But wait, there’s more
	Slide 6: Transmission Formats (or encodings, as they’re known in the 1337 h4x0r biz)
	Slide 7: Now how to generate the sound?
	Slide 8: But there’s another problem…
	Slide 9: WARNING: MATH INCOMING
	Slide 10: The Zero-Crossing Algorithm
	Slide 11: Problems with the Zero-Crossing Algorithm
	Slide 12: Problems with the Zero-Crossing Algorithm
	Slide 13: So with any noise in the background the Zero Crossing Algorithm won’t work.
	Slide 14: Enter Fast Fourier Transform (FFT)
	Slide 15: How does it do this?
	Slide 16: Math too complicated to go into here.
	Slide 17: Enter Fast Fourier Transform (FFT)
	Slide 18: Enter Fast Fourier Transform (FFT)
	Slide 19: Enter Fast Fourier Transform (FFT)
	Slide 20
	Slide 21: Conversion back to text is pretty much the same but backwards
	Slide 22: But what if you’re really far away?
	Slide 23: Take clues from torrents and make it P2P
	Slide 24: Take clues from torrents and make it P2P
	Slide 25: Take clues from torrents and make it P2P
	Slide 26: Take clues from torrents and make it P2P
	Slide 27: Take clues from torrents and make it P2P
	Slide 28: And have error correction
	Slide 29: And have error correction
	Slide 30: And have error correction
	Slide 31: And have error correction
	Slide 32: And have error correction
	Slide 33: And have error correction
	Slide 34: And have error correction
	Slide 35: Or even pipe internet
	Slide 36: Or even pipe internet
	Slide 37: Or even pipe internet
	Slide 38: Or even pipe internet
	Slide 39: Messages are untraceable (except by literally following the sound, which is hard) and above the hearing ranges of most people above 25
	Slide 40: And who knows, maybe we won’t get caught this time. (LOL JK)
	Slide 41: Time for a demo!

